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Stability of scaling regimes ind=2 developed turbulence with weak anisotropy
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Fully developed turbulence with weak anisotropy is investigated by means of the renormalization group
approach and double expansion regularization for dimengleni®. Some modification of the standard mini-
mal subtraction scheme has been used to analyze the stability of the Kolmogorov scaling regime which is
governed by the renormalization group fixed point. This fixed point is unstakle at thus the infinitesimally
weak anisotropy destroys the above scaling regime in two-dimensional space. The restoration of the stability of
this fixed point, under a transition frooh=2 to 3, is demonstrated at a borderline dimensiend2<3. The
results are in qualitative agreement with results recently obtained in the framework of a typical analytical
regularization scheme.
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[. INTRODUCTION investigation of real systems. In this type of transition from
isotropically developed turbulence into the anisotropically
A traditional approach to the description of fully devel- developed turbulence, we have to learn whether the scaling
oped turbulence is based on the stochastic Navier-Stokeggime remains stable under this transition. In other words,
equation[1]. The complexity of this equation leads to great do the stable fixed points of the RG equations remain stable
difficulties, which do not allow one to solve it even in the under the influence of anisotropy?
simplest case when one assumes the isotropy of the system During the last decade a few papers have appeared in
under consideration. On the other hand, isotropic turbulenc&hich the above question was considered. In some cases, it
is almost a delusion, and if it exists it is still rather rare. Was found that stability actually takes pla@ee, e.g., Refs.
Therefore, if one wants to model more or less realisticallyl7-8)- On the other hand, the existence of systems without
developed turbulence, one is pushed to consider anisotroppt/Ch @ stability has also been proven. As shown in FBf.
cally forced turbulence rather than isotropically forced tur-In @nisotropically magnetohydrodynamically developed tur-

bulence. This, of course, rapidly increases the complexity oPUlENce a stable regime generally does not exist. In Refs.

the corresponding differential equation, which itself has t 8,10}, d-dimensional models witli>2 were investigated

. : i . for two cases, weak anisotrogy] and strong anisotropy
involve the part responsible for a description of the anISOI[10], and it was shown that the stability of the isotropic fixed

ropy. An exact solution of the stochastic Navier-Stokes equa="_:"" " | di iong<d.— | h
tion does not exist, and one is forced to find some convenie oint Is lost fgr Imensionsi < C_.2‘68' It was also shown
; at the stability of the fixed point, even for dimensidn

me;hodi t§| treatdthle problemfalltsezalsF S:Ep '?hy step.f devel =3, takes place only for sufficiently weak anisotropy. The
suitable and aiso powertul ool In the theory of devel- . broplem in these investigations is that it is impossible to
oped turbulence is the so-called renormalization grdR@) use them in the casé=2, because new ultravioldtV)

m_ethod? During the last two decades the RG technique wagjiyergences appear in the Green functions, when one consid-
widely used in this field of science, and gives answers tQ, ¢ d=2, and they were not taken into account in Refs.
some principal questiong.g., the fundamental description [8,10].

of the infrared(IR) scale invariance and is also useful for In Ref. [11], a correct treatment of the two-dimensional
calculations of many universal parametéesg., critical di-  isotropic turbulence was given. The correctness in the renor-
mensions of the fields and their gradiens, Jet& detailed  j)ization procedure was reached by introducing a new local
survey of these questions can be found in Rpfs-6], and  grm (with a new coupling constaninto the models, which
references therein. , allows one to remove additional UV divergences. From this
_In early papers, the RG approach was applied only tgint of view, the results obtained earlier for anisotropically
isotropic models of devel_oped turbulen_c_e. _However, thedeveloped turbulence, presented in Ré®2] and based on
method can also be usddith some modificationsin the  Ref [13] (the results of the last paper are in conflict with
theory of anisotropically developed turbulence. A crucialges [11]) cannot be considered as correct because they are
question immediately arises here: whether the principal proppconsistent with the basic requirement of the UV renormal-

erties of the isotropic case and the anisotropic case are theation, namely, with the requirement of the localness of the
same, at least at the qualitative level. If they are, then it iSountertermg 14,185,

possible to consider the isotropic case as a first step in the The authors of a recent papéi6] used the double-
expansion procedure introduced in Rigf1] (this procedure

is a combination of the well-known Wilson dimensional
'Here we consider the quantum-field renormalization group apfegularization procedure and an analytical jomed the mini-
proach[2] instead of the Wilson renormalization group technique mal substractiofMS) scheme[17] for an investigation of
[3]. developed turbulence with weak anisotropydet 2. In such
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a perturbative approach the deviation of the spatial dimeneiscuss our results. Appendix A contains expressions for the

sion fromd=2 andé=(d—2)/2, and that of the exponent of divergent parts of the important graphs. Finally, Appendix B

the powerlike correlation function of random forcing from contains analytical expressions for the fixed point, and the

their critical values, play the roles of expansion parameters.equation which describes its stability in the limit of weak
The main result of the paper was the conclusion that thé@niSotropy.

two-dimensional(2D) fixed point is not stable under weak

anisotropy. It means that 2D turbulence is very sensitive toll. DESCRIPTION OF THE MODEL: UV DIVERGENCIES

the anisotropy, and no stable scaling regimes exist in this

case. In the casd=3, for both isotropic and anisotropic

turbulence, as mentioned above, the existence of a stab

fixed point, which governs the Kolmogorov asymptotic re-

gime, was established by means of the RG approach by usi

the analytical regularization proceddig8,10. One can per-

form an analytical continuation frond=2 to the three-

dimensional turbulencén the same sense as in the theory of

critical phenomeng and verify whether the stability of the

fixed point(or, equivalently, the stability of the Kolmogorov DR i oo

scaling regimgis restored. From the analysis made in Ref.velocity field v(x,t), and its evolution is given by the ran-

[16], it follows that it is impossible to restore the stable re-domly forced Navier-Stokes equation

gime by transition from dimensiod=2 to 3. We suppose B

that the main reason for the above described discrepancy is = N - PA_ZT

related to the straightforward application of the standgrd l\/}I/S ot T Vv=wedv—1t=f, 29

scheme. In the standard MS scheme one works with a purely

divergent part of the Green functions only, and in concretévhere we assume the incompressibility of the fluid, which is

calculations its dependence on the space dimersicesult-  given mathematically by the well-known conditioné: v

ing from the tensor nature of these Green functions, is ne=qg andV.f=0. In Eq.(2.1) the parametepy is the kine-

glected(see Sec. l)l. In the case of isotropic models, the matic viscosity(hereafter all parameters with a subscript 0
sHtab|I|ty of the flxetd points :js Im(:ﬁperldg'rl]'tt of ﬂmegsmf‘t denote bare parameters of unrenormalized theory; see be-
owever, in anisotropic models the stability of fixed points, 2a - . ) N

depends on the dimensiah and consideration of the tensor I,OW)’ the termf™is related to anisotropy, and W'", be fPeC'
structure of Feynman graphs in the analysis of their diverfiéd later. The large-scale random force per unit mass

In this section we give a description of the model. As
ready discussed in Sec. I, we work with fully developed
drbulence, and assume a weak anisotropy of the system.
This means that the parameters that describe deviations from
He fully isotropic case are sufficiently small, and allow one
to forget about corrections of higher degre#san lineay
which are made by them.

In the statistical theory of anisotropically developed tur-
bulence, the turbulent flow can be described by a random

gences becomes important. assumed to have Gaussian statistics defined by the averages
In the present paper we suggest applying a modified MS - - - -

scheme in which we keep thidependence of the UV di- (f)=0, (fi(x1,Of;(X2,1)) =Djj (X1 =Xz, t1 —t5).

vergences of graphs. We affirm that after such a modification (2.2

the d dependence is correctly taken into account, and can be, | two-point correlation matrix

used to investigate whether it is possible to restore the sta-

bility of the anisotropically developed turbulence for some dk

dimensio_ndc when going from a t_vvo_-dim_er?s_ional system to Dij(i,t)= 5(t)f —d'[')ij(E)exp(iIZ.i) (2.3

a three-dimensional one. In the limit of infinitesimally weak (2)

anisotropy for the physically most reasonable valueeof
=2, the value of the borderline dimensionds=2.44. Be- IS convenient to parametrize 5,9]
low the borderline dimension, the stable regime of the fixed _ . .
point of the isotropically developed turbulence is lost by in-  Dij(K)=gorgk* 4 2 (1+ a0t Pij (K) + azoR;; (K) ],
fluence of weak anisotropy. (2.4
It should be mentioned that a similar idea of a “geometric .
factor” was used in Ref[18] in a RG analysis of the Wwhere avectok is the wave vector is the dimension of the
Burgers-Kardar-Parisi-Zhang equation, but the reason fospace(in our case, Zd), ande=0 is a dimensionless pa-
keeping thed dependence of divergent parts of the graphgameter of the model. If the dimension of the system is taken
was to take correctly into account the finite part of the one-asd>2, then the physical value of this parametereis 2
loop Feynman diagrams in the two-loop approximation. In(the so-called energy pumping regimé&he situation is more
the present paper, we shall not discuss this in detail, becausemplicated wheml=2. In this case new integrals of motion
the critical analysis of the results obtained in Réf8] was  arise, namely, the enstrophy, and all its powgos details,
given in Ref.[19]. see Ref[20]) which leads to ambiguity in the determination
The paper is organized as follows. In Sec. Il we give theof the inertial range, and this freedom is given in the RG
guantum field functional formulation of the problem of fully method by the value of the parameter The valuee=3
developed turbulence with weak anisotropy. A RG analysisorresponds to the so-called enstrophy pumping regime. This
is given in Sec. Ill, where we discuss the stability of the problem of uncertainty cannot be solved in the framework of
fixed point obtained under weak anisotropy. In Sec. IV wethe RG technique. On the other hand, the value & not
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important for the stability of the fixed point wheth=2.  related to anisotropic structures. In this cade-@), one can
Thus, from our point of view, the value &f in the cased use the above actiditq. (2.6)] with [Eq. (2.4)] to solve the
=2 is not important. Its value=0 corresponds to a loga- anisotropic turbulent problem. Therefore, in order to arrive at
rithmic perturbation theory for a calculation of the Greena multiplicatively renormalizable model, we have to take the
functions wheng,, which plays the role of a bare coupling term 2 in the form

constant of the model, becomes dimensionless. The problem

of continuation frome=0 to physical values was discussed fA= VO[XlO(ﬁ' €)25+Xzoﬁ€2(ﬁ-5)+Xsoﬁ(ﬁ-ﬁ)2(ﬁ-5)]-

in Ref.[21]. The (dxd) matricesP;; andR;; are the trans- (2.7
verse projection operators, and in wave-number space are
defined by the relations Bare parametergqg, x20, andyso characterize the weight of
the individual structures in Eq2.7).
k; K;

j . k; J A more complic_ated situation arises in the specific case
2 Rij (k)= ( n;— ka> ( nj— ng) . d=2, where new divergences appear. They are related to the
(2.5) 1-irreducible Green functiogv'v’), which is finite when

d>2. Here one comes to the problem of how to remove

P P e these divergences, because the term in our action, which con-
where i is given by the equatiod=k-n/k. In Eq. (2.9), tains a structure of this type, is nonlocal, namely,

thg unit vectorrl spec':lfles the dlrectpn of the anisotropy 5'KA~9-2¢;" The only correct way of solving the above
axis. The tensob;; , given by Eq(2.4), is the most general roblem is to introduce a new local term of the fos¥ 2y’
form with respect to the condition of incompressibility of the P otropic cas info the action[11]. In the anfsotr(;) ic
system under consideration, and contains two dimensionle%:se pwe have to  introduce édditional countefterms
free parametersiyg and ao. From the positiveness of the =™ 9wy 2 e an, s s e s s s
correlator tensoD;;, one immediately obtains restrictions Y (n-V)7’, (n-0")V:(n-v’) and (@-v’)(n-V)*(n-v’).

on the above parameters, nametyg=—1 anda,,=—1. In In Refs.[11,13 a double-expansion method with a simulta-
what follows we assume that these parameters are smdlous deviation @=d—2 from the spatial dimensiod=2,

enough, and generate only small deviations from the isotrop@nd also a deviatioa from thek” form of the forcing pair
case. correlation function proportional tk< <" <€, were pro-

Using the well-known Martin-Siggia-Rose formalism of Posed. We shall follow the formulation founded on the two-

the stochastic quantizatidi22—25, one can transform the €Xpansion parameters in the present paper.
stochastic problerfEq. (2.1)] with the correlatofEq. (2.3)] In this case, the kerndEq. (2.4)] corresponding to the

into the quantum field model of fields andv’. Herey’ is ~ correlation matrixDj; (X, —X,,t,—1t;) in action (2.6) is re-

independent of the auxiliary incompressible field, which placed by the expression
we have to introduce when transforming the stochastic prob-
lem into a functional form.

The action of the fields andv’ is given in the form +0oovak? (1+ a3ogﬁ)pij(|z)

Pij(k)=5—

D (K) = g10vgk® 22 2L (1+ a1o£2) Pij (K) + aagR; (K) ]

1 - - - 2R (K
S= EJ ddxldtlddxzdtz[vi’(xl,tl) +(a4o+asofk)R|J(k)]- 2.9

HereP;; andR;; are given by relation2.5); 9,0, @30, @40,

and asg are new parameters of the model; and the parameter
Jo In EQ.(2.4) is now renamed);5. One can see that in such

a formulation the counterterm’VZ%’ and all anisotropic
terms can be taken into account by a renormalization of the
coupling constang,,, and the parameter&s,, @49, and

X Dij()Zl_)zzatl_tz)vj/()zz,tz)]ﬁL f dix dt{v’ (x,t)
X[ —d —(v- V)0 + oV 20 +TAY(X, 1)} (2.6)

The functional formulation gives the possibility of using

guantum field theory methods, including the RG technique td*so0- S

solve the problem. By means of the RG approach it is pos- It has.to pe stressed. that the last term of fhein Eq.

sible to extract large-scale asymptotic behavior of the corre(2.7), which is characterized by the paramegap, and the

lation functions after an appropriate renormalization proceferm of the correlation matrikEq. (2.8)], related to the pa-

dure which is needed to remove UV divergences. rameteras,, are of the orde®(n?), in contrast to the others
Now we can return to give an explicit form of the aniso- Which are eitheiO(n°) (the isotropic termsor O(n?). Be-

tropic dissipative ternfA. Whend>2, the UV divergences cause we work in the limit of weak anisotropy, this fact

are only present in the one-particle-irreducible Green functauses, as a consequence, the values at the fixed point to

. - - ) . vanish. On the other hand, the eigenvalues of the stability
tion (v'v). To remove them, one needs*toalniroduce into thematrix, which correspond to the parametgrg and as,, are
action, in addition to the COUnterterm’Vzv (the Only of the same Ordero(s), as the eigenva|ues which corre-
counterterm needed in the isotropic madethe terms  spond to the other parameters; they play important roles in
v'(n-V)%, (n-v')V%n-v), and (-v')(n-V)%(n-v). the determination of stability of the reginieee details in
These additional terms are needed to remove divergencé&ec. lI).
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=< vv; >o= Afjp(];, W) of one-particle-irreducible Green functiongv’)r and
(v'v") g are quadratic in the wave vector. The last one takes
place only in the case when the dimension of the space is 2.
All terms needed for removing the divergences are included
o in action(2.6), with Eq. (2.7) and kernel2.8). This leads to
T =<y >0= A (K,wr) = 0 the fact that our model is multiplicatively renormalizable.
Thus one can immediately write down the renormalized ac-
tion in the wave-number—frequency representation, With

Action (2.6), with the kernelﬁij(IZ) [Eq. (2.8)], is given —iK,d;— —i wy (all needed integrations and summations are
in a form convenient for a realization of the quantum field @SSUmes
perturbation analysis with the standard Feynman diagram R L 5 22 252 5
technique. From the quadratic part of the action, one obtainsS™(v,v")=zv{{g1v°u"°k T+ ar&)Pij+ azRjj]
the matrix of bare propagators. Their wave-number— 3 _25.2 2
frequency representation is presented in Fig. 1, where T TK(Zs T Zoraio) Py

—+ =<} >o= Af}” (E, wg)

FIG. 1. The propagators of the model.

+(Z7as+ Zgasép) Ry 1}o]

N Ks 1
AP (K, wp) = — P, + = i
i (k@) KiKa 1 K [K,+K(1-£D)] +v{{(io—Z1k?) Py = vk Zox1 £¢P;
2 ’
RK; K[Ks+Kq(1-e)] +(Zaxot Zaxs&O) R Thvj+3v{vjo Vijr
K + — > 4 Rijv (31)
2 [Ki+K(1-§0]

whereu is a scale setting parameter with the same canonical
dimension as the wave number. Quantitigs x;, as, a4,

as, and v are the renormalized counterparts of bare ones,
andZ; are renormalization constants which are expressed via

U XU

;o 1
A% (K, ) = —P;i — Ri, (2.9
TG Pk Ra—an 2

with the UV divergent parts of the functionsvv’)r and
- - v'v')r. Their general form in the one loop approximation
Ky =i i+ vok?+ voxao(R-K)2, i<s iR g P app
K= —iwict vok™+ voxad(n-k)?, Z=1-FPe. (3.2

Ka.=— 3K2—28-2¢(1 4 2\ _ 3k2(1+ 2 ,
3 G10v0 (1+ @106 ~ Gaovok (1 + eraotiy) In the standard MS scheme the amplitudgsare only

some functions of};, xi, @3, a4, as, and are independent
of dande. The termSPf'f are given by linear combinations
% 2 = 2 of the poles 1/2, 1/26, and 1/(4+26) (for 6—0 ande
K= voxad™+ voxsdn-K)™ (210 —0). The amplitudesF;=F"F® are a product of two
The propagators are written in a form suitable for strongmultipliers F{*) andF(®). One of them, sayk " is a multi-
anisotropy when the parameterg, are not small. In the case plier originating from the divergent part of the Feynman dia-
of weak anisotropy, it is possible to make an expansion, angrams, and the second orﬁ;‘(?), is connected only with the
to work only with linear terms with respect to all parameterstensor nature of the diagrams. We explain this using the fol-
which characterize anisotropy. The interaction vertex in oulowing simple example. Consider a UV-divergent integral
model is given in Fig. 2. Here the wave vecfocorresponds

3),2—-25-2¢
ok

_ 3,2 2
Ks=—010¥ @20~ 20VoK (a0t aspé) s

to the fieldv’. Now one can use the above introduced Feyn- g 1
man rules for a computation of all needed graphs. |(k*”)Enianlkmf d qm
I1l. RG ANALYSIS AND STABILITY OF THE 01i01; 9 I 5ijC|IQm+ 5quqm+ 5j|qiqm
FIXED POINT 2 - 2
q 3q

Using the standard analysis of quantum field the@ee,
e.g., Refs[4,6,14,19), one can find that the UV divergences (symmations over repeated indices are implietherem is
an infrared mass. It can be simplified as
qu‘

= Vi = i(k;0q + kidi;).- _ R
1 = i(kjba + kidij) I(k,n)—ninjk|km8”|mf0 dq (Pt )25

FIG. 2. The vertex of the model. where
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d e - , ) =
Sijlm:m 5ij5Im+5iI5jm+5im5jl <vv >IR @ <vw >IR G
(d+2) FIG. 3. Divergent one-irreducible Green functions in the one-
- T(ﬁij OimT 81 Ojm+ Simdj1) |, loop approximation.
28 where agairi=1, 2, and 3.
f“d 2 a _ I'(6+1)I'(6) In the one-loop approximation, divergent one-irreducible
o 2(P+m?) 20 2m2(26+1) Green functiongv'v ),z and(v’'v') g are represented by the

Feynman graphs, which are shown in Fig. 3. The divergent
and S;=27%%T(d/i2) is the surface of unit the parts of these diagram’®’ andT*'* have the structure
d-dimensional sphere. The purely UV divergent part mani-
fests itself as the pole in®=d—2; therefore, we find SR g?

ey =-v°A

2 46+25[a15ijk2+325ij(ﬁ~E)2+a3ninjk2

UVdiv. part of | = %[Ff)k% FP(nk)?], 0.0
+aynin;(n-K)2]+ %[blaijk%bzaij(ﬁﬁ)z
whereF (P =F{/2=(1-d)Sy3d(d+2) (F{M=FM=1).

In the standard MS scheme one pudts2 in F{?) and
F(); therefore, thal dependence of these multipliers is ig-
nored. For theories with vector fields and, consequently, with
tensor diagrams, where the sign of values of fixed points
and/or their stability depend on the dimensinthe proce-
dure, which eliminates the dependence of multipliers of the
typesF(lz) and F(22) on d, is not completely correct because , o1 .
one is not able to control the stability of the fixed point when I'* *=—7A Z[d15ijk2+ d,8;j(n-k)2+d3n;n;k?
d=3. In the analysis of Feynman diagrams, we propose to
slightly modify the MS scheme in such a way that we keep s =y g ) - s
the d dependence ofF in Eq. (3.2). The following calcula- +dgnini(n-k)°]+ __25[615iik +€6;;(n-k)
tions of RG functions g8 functions and anomalous dimen-
siong allow one to arrive at results which are in qualitative
agreement with the results obtained recently in the frame-
work of the simple analytical regularization schefé], i.e.
we obtain a fixed point which is not stable fde=2, but  where parameteA and functionsa;, b;, c;, d;, ande; are
whose stability is restored for a borderline dimension 2given in Appendix A (=1, ...,4). Thecounterterms are
<d.<3. built up from these divergent parts, which lead to the follow-

The transition from actior§2.6) to the renormalized one ing equations for renormalization constants:

[Eq. (3.1)] is given by the introduction of the renormalization

2

9

+banin;k?+bynin;(n-k)?]+ 5

[Cléij k2

+C58;;(n-K)2+canink?+ ¢ nin;(n- IZ)Z]}

+esninjk2+e4ninj(ﬁ’E)z]}a 3.9

constantsZ, Z,=1-A %dl_ %91>,
_ oy 2 oy, —26 2e 26
vo=vZ,, Q10=014"Zg,, G20=02u “°Zg,
21Oy 2
XiO:XiZXi! Q(i+2)0~ ai+22ai+2, (33) 1+i— Xi 2¢ 1+i 2561+i )
wherei=1, 2, and 3. By comparison of the corresponding Alg® a g 9
terms in action(3.1) with definitions of the renormalization 25:1+—(—1 —1+—1b1— —ch), (3.6
constantsZ for parameter$3.3), one can immediately write 2192 4€+25  2¢ 26
down relations between them. We have A )
91 aj+1 | O1 92
Z,=2,, Zs+i=1 2ai+2<gz det25 2041 25C'+1)’
24,=2;°, i=1,2,3.
Z, 22521—3, (3.4 From these expressions, one can define the corresponding
z anomalous dimensiong = ud,, In Z; for all renormalization
7 —7. . 7-1 constants; (the logarithmic derivativewd,, is taken at fixed
X ST values of all bare parametgrdhe 3 functions for all invari-
_ _1 ant chargesrunning coupling constantg; andg,, and pa-
Loy, = Zivsls rameters y; and «;,,) are given by the relationsﬁgi
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=wd,g (i=1,2), By, = 1 uXi and Bay, ,= 1,2 (i rameters which are connected with the anisotropy are equal
=1,2,3). Now using Eq¥(3.4) and definitions given above, t0 zero, and one can immediately find the Kolmogorov fixed

one can immediately write thg functions in the forms point, namely,
By, = —01(2€+ v )=01(—2e+3yy), . 1 8(2+d)e[2e—3d(5+ ) +d*(36+2¢)]
A 9(—1+d)%d(1+d)(6+e)
Bg,=92(26— v4,) =92(26+3y1~ ¥s), (3.12
: (3.7 1 8(—4-2d+2d*+d%)e?
By,=~XiVx=~Xi(¥i+1— 71, 92+ =% o~ 1+d) 1ot e’
Bay.,=™ = @i+2Ye,,~ ~@i+2(Vies—ys), 1=123, whered= (d—2)/2 and the corresponding; matrix has the
following eigenvalues
where
=A(g,d{+0g.€1), - _ _ 2
(91d:+02€1) A1 6d(d—1) (6d8(d—1)+4e(2—3d+2d?)
A
Yi+1=—(91di 41+ 026 11), +{[6d5(1-d)~4€(2-3d+2d?)]?
Xi
' 39 —12d(d—1)e[12d8(d— 1)+ 4e(2— 3d + 2d2) ]} 12).
5 .
V5= E(%aﬁ' g1b;+ 9201), (313
By a detailed analysis of these eigenvalues, we know that in
A [(g? the interesting region of parameters, namealy0 and 6
Yits= " 201,10, —&+1 T 0101+ 0G4, 151,23 =0 (it corresponds tal=2) the above computed fixed point
1+

is stable. In the limitd=2, this fixed point is in agreement
By substitution of the anomalous dimensiops[Eq. (3.8]  With that given in Refs[11,16].

into expressions for th@ functions, one obtains ~ When one considerthe weak anisotropy caséhe situa-
tion becomes more complicated because of necessity to use
Bg,= 01[ —2e+3A(g1d;+greq)], all system ofg functions if one wants to analyze the stability

of the fixed point. It is also possible to find analytical expres-
sions for the fixed point in this more complicated case, be-
cause in the weak anisotropy limit it is enough to calculate
linear corrections ofa; and «, to all the quantities(see
Appendix B.

To investigate the stability of the fixed point, it is neces-
sary to apply it in matrix(3.11). Analysis of this matrix

g}
—a;+g.b+ 9201) ,
Jd2

A
Bg,= 92| 26+ 3A(g1d1+9ze1) +§

By, = —A[(91di 111+ 926 + 1) — xi(91d1+02€1) ],

2
B, =-— ﬁ[ _ %a- +0ybi s 1+ 0aC ) shows us that it can be written in the block-diagonal form:
fivz 2 g, Tt EIrL el (6x6)(2x2). The 2x 2 part is given by thgs functions of
2 the parameterss and x5, and this block is responsible for
+ i, %aﬁglbﬁgzcl) ’ the existence of the borderline dimensidnbecause one of
92 its eigenvalues, say\,(e,d,aq,a5), has a solutiond,

€(2,3) of the equation\,(€,d;,@,,a,)=0 for the defined
i=1,23. (3.9  values ofe, a;, anda,. The following procedure has been
used to find the fixed point: First we have used isotropic
solution tog,; andg, to compute the expressions faf, ,
andy;, i=1, 2, and 3. From equatiorﬁ%:O and,BX3=0,

The fixed point of the RG equations is defined by the
system of eight equations

Bc(Cy)=0, (3.10 one can immediately find thats, =0 and y3, =0. After
this we can calculate expressions for the fixed point of the
where we denot€={g,,02,xi @ +2}, i=1, 2, and 3, and parametersy;,, andy;, i=1 and 2. At the end, we come

C, is the corresponding value for the fixed point. The IRback to the equations fay, and g,, namely, Bg,=0 and
Stab|l|ty Of the f|Xed pOInt |S determ|ned by the pOS|t|Ve realﬂ _0 and f|nd ||near CO”‘ec“ons @fl and ay to the f|Xed

parts of the eigenvalues of the matrix pomt The corresponding expressions for the fixed point and
9 the corresponding eigenvalue of the stability matrix respon-
B, . . I . . ;
. m=1,...,8. (3.11)  Ssible for the instability are given in Appendix B.

t9Cm c=c, For the energy pumping regime£2) anda;=a,=0,
we found the critical dimensiod.=2.44. This is the case

Now we have all necessary tools at hand to investigate thevhen one supposes only the fact of the anisotropy. Using
fixed points and their stability. Ithe isotropic casell pa-  nonzero values of; and«, one can also estimate the influ-

Oym=
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infinitesimally small anisotropyd;—0 anda,—0) and in
the energy pumping regime€ 2), we have found the bor-
derline dimensiord.=2.44. We have also investigated the
dependence odl,. for different values of the anisotropy pa-
rametersa,; and «,, and also the dependence ayf on the
relatively small values ofr; and «, for the physical value
e=2.

ACNOWLEDGMENT

This work was partially supported by Slovak Academy of
Sciences within Project No. 7232. M. H. gratefully acknowl-
edges the hospitality of the Laboratory of Theoretical Phys-

ics at JINR, Dubna.

FIG. 4. Dependence of the borderline dimensiknon the pa-
rametere for concrete values of; and a,.

ence of these parameters on the borderline dimertiorit
is interesting to calculate the dependencdobn the param-

APPENDIX A

The explicit form of the parametek and functionsa; ,
b/, ¢, d;, andeg, (i=1, ...,4) for the divergent parts of

etere t00. In Fig. 4, this dependence and the dependence ofiagrams(Fig. 3

small values ofa; and a, are presented. As one can see
from this figured. increases wheea— 0, and the parameters
a4 anda, give small corrections td. . In Fig. 5, the depen-
dences ofd. on a; anda, on e=2 are presented.

IV. CONCLUSION

We have investigated the influence of the weak anisotropy
on the fully developed turbulence using the quantum field
RG double expansion method, and introduced a modified
minimal subtraction scheme in which the space dimension
dependence of the divergent parts of the Feynman diagrams
is kept. We affirm that such a modified approach is correct
when one needs to compute thelependence of the impor- 82
tant quantities, and is necessary for restoration of the stabil-
ity of scaling regimes when one makes transition from di-
mension d=2 to d=3. We have derived analytical
expressions for the fixed point in the limit of weak anisot-
ropy, and found an equation which manages the stability of
this point as a function of the parametetsa,, anda,, and
allows one to calculate the borderline dimensthn Below
this dimension the fixed point is unstable. In the limit case of

2.44

2.42A

2.40+

2.38 T T T

FIG. 5. Dependence of the borderline dimensihnon the pa-
rametersa; and a, for a physical value=2.
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1

by

_ _ 2 3
2d(2+d)(4+d)(6+d)L 48200+ 70d"+30d

—21d*—10d°— d®+ a»(24+ 16d — 22d%2— 16d%— 2d*)
+ a1(24+52d— 4d?—50d3— 20d*— 2d°)

+ x1(— 36— 78d+ 6d%+ 75d3+ 30d*+ 3d°)

+ x,(— 36— 24d + 33d%+ 24d3+ 3d%)

+ x3(—36—9d+36d%+9d3)],

_ _ 2 3
4d(2 1 d) (41 d)(61 ) (96~ 64d+88d"+64d

+8d%4) + ap( — 96— 64d -+ 124d%+ 82d°— 26d*— 18d°
—2d®) + y1(144+96d — 13202 — 96d°3— 12d*)

+ xo(144+ 96d — 18602 — 1233+ 39d*+ 27d°+ 3d°)
+ x3(72+6d—87d?>—9d>+ 15d*+ 3d°)],

a.3:a.2,

_ 6xg(1-d?)
M= 2 d)(6+4d)’

1
T d(2+d)(4+d)(6+d)
—21d*—10d°— d®+ ag(12+ 3d—12d2— 3d°)
+ (ap+ ay)(12+8d—11d2—8d3—d*)
+ (ay+ az)(12+26d—2d?— 25d%— 10d*— d®)
+ x1(—36—78d+6d?+ 7503+ 30d*+ 3d°)
+ xo(— 36— 24d+ 33d%+ 24d3+ 3d%)
+ x3(—36—9d+36d%+9d3)],

[ —48—20d+ 70d?+ 30d°
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1 1
b= ST d) 4+ d)(61d) &= gdz )4+ d)(61d)
X[ (ay+ az)(—48—32d+44d?+ 32d3+ 4d%) X[ ay(— 48+ 16d+52d%2— 16d3—4d*)
+ ag( — 24— 2d+29d°+ 3d®— 5d*—d°) + a(48+80d — 60d2— 96d°3+ 10d*+ 16d°+ 2d°)
+(ap+ ay)(—48—32d+62d%+ 41d3—13d*— 9d°—d°) + x1(48—64d— 60d?+ 64d3+ 12d%)
+ x1(144+ 96d — 13202 — 96d°— 12d%) + xo(—48—104d + 62d%+ 127d% — 11d*— 23d°— 3d°)
+ x,(144+ 96d — 186d%— 12303+ 39d* + 27d°+ 3d°) + x3(—2d+7d?+ 5d3— 7d*—3d%)],
+ x3(72+ 6d—87d?— 9d>+ 15d*+ 3d°) ], .
d =
bs=b,, 37 8d(2+d)(4+d)(6+d)
X[ ar1(48+ 56d — 40d%— 56d°— 8d%)
b4:4(d2—1)(a5—3>{3) + ap( — 48— 560+ 4002+ 56d°+ 8d%)
+ + ’
(2+d)(6+d) + x1(—48—104d + 32d2+ 104d3+ 16d%)
1 ) X + x2(48+32d — 38d%— 250% - 9d*— 7d°— d°)
Cl_Zd(2+d)(4+d)(6+d)[_48_20d+70d 30 + y3(22d—d?2— 2103+ d*— d5) ],
—21d*~10d° - d°+ a5(24+ 6d — 24d*— 6d°) )
x3(—10+d+10d?—d3)
+ ay(24+ 16d— 22d%— 16d3— 2d%) ST 2 d)6rd)
+ ag(24+52d — 4d2—50d3— 20d*— 2d°)
+ y1(— 36— 78d+ 6d%+ 7503+ 30d* + 3d°) . 1
4d(2+d)(4+d)(6+d
+ xo(— 36— 24d+ 33d%+ 24d3+ 3d%) ( A A )
s o3 X [24d—14d?—33d3+13d*+9d° +d®+ 3dag( — 1+ d?)
+ x3(—36—9d+36d%+9d°%)],
+ ay(12—4d—13d%+ 4d3+d%)
o 1 + ag(— 12— 20d+ 3d?+ 19d3+ 9d*+ d°)
2 4d(2+d)(4+d)(6+d) 4 y1(36+42d— 1802 — 400°— 1804 — 2d5)
X[ az(—96— 64d+ 88d2+ 64d3+ 8d4) +yo(—12+16d+ l5d2—16d3—3d4)
+a5(—48—4d+58d2+ 6d3—10d4—2d5) + y3(6+ 9d_6d2_9d3)]
+ ag( — 96— 64d + 124d%+ 82d°%— 26d*— 18d°— 2d°)
T x1(144+96d— 13202 — 9603 12d%) o, 1
8d(2+d)(4+d)(6+d)
+ x(144+96d — 186d%— 1233+ 39d* + 27d°+ 3d°) .
X [ ag(— 48+ 16d+ 5202 — 16d3— 4d%)
+ x3(72+6d—87d?—9d3+ 15d*+ 3d°) ], ) .
+ ag(—8d%—2d3+ 8d*+ 2d°)
C3=Cyp, + a(48+80d— 60d%— 96d3+ 10d*+ 16d°+ 2d°)
) + x1(48—64d — 60d%+ 64d°+ 12d*)
oo - DUas6xa) T xa — 48— 1040+ 6202+ 127d3 — 11d*— 23d5— 3d°)
47T (2+d)(6+d) X2
+ x3(—2d+7d?+5d3— 7d*—3d°)],
d,= ! [24d — 14d®—33d®+ 13d* 1
17 4d(2+d)(4+d)(6+d) -
878d(2+d)(4+d)(6+d)

+9d°+d°+ ay(12—4d — 13d?+4d3+d*)
+ ay(—12—20d+ 3d?+19d°+ 9d*+ d°)
+ x1(36+42d— 18d%— 40d3— 18d*— 2d°)
+ xo(— 12+ 16d+ 15d%— 16d3—3d*)

+ x3(6+9d—6d%—9d%)],

016312-8

X[24d as(—1+d?) + a3(48+ 56d — 40d2— 56d°— 8d*)
+ ary(— 48— 56d + 40d%+ 56d°+ 8d*)

+ x1(—48—104d+ 32d?+ 104d3+ 16d*)

+ x(48+32d—38d°— 2503 — 9d*— 7d°— d°)

+ x3(22d— d?—21d3+ d*—d®)],
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_6&5(1_d2)+X3(_10+d+ 1Od2—d3) d gy =621a1+ [SPLeTy
©4= 2(2+d)(6+d)
X1x =€3101 1 €350,
A >
=, =@ a1+ €40,,
(2m)9(d2—1) X2x = 41017 €422
: . . : . =0,
whereS; is ad-dimensional sphere given by the relation “ox
2912 X3x =0,
T Tdy wheregqg, andg,q, are defined in Eq(3.12, and g4, ,
M3 9124 » Y21 » U2z » @Ndey;, 1=1,2,3,and 4j=1 and 2, are
functions only of the dimensiod and parameters and §
=(d—2)/2. They have the forms
APPENDIX B
Here we present explicit analytical expressions for the _ 9 _9n _Yen _9en
. S X < 911x v Y1k v O v Yoo ,
fixed point in the weak anisotropy limit, and also the equa- 9114 912 922 922d
tion which governs its stability. The basic forms of the fixed
point are _€un _ €1 _ € _ €
ell_e_d! €=—— €xu=—_—, ezz—e_d,
014 =010x T J115 @177 J124 @2,
eo_fem GGG
92+ = G20« T 214 @1 22 @2, 17 0es’ P gy’ Mgy’ Y geey’

a3, = €1+ ea0, where

911n=3(d°—1)910, [d°(G10x + T20x ) (5831~ 3)U10c — 3€110204 +5€31020x ]+ 30%(G 10 + T2 )[(— 2+ 3€31+ 2€41) G104
—(2e11+ €1~ 3€31~ 2€41) G204 ] — 8( 910k + 9204 ) (— 1+ 3€31—€41) G104 — (€12~ €21~ 3€31+ €41) U204 ]
+d%{— (G10c + Y20 ) (— 4+ 9831~ 6€41)F10, +[ — 411+ 3(€211 3€31—2€41) 10204 |
+86[(—5+10e3,+3€41)J10x — (5€11+ €21~ 10831~ 3€41) G204 |
+20d{ = (910« + Yo0x )[(— 1+ 6€41) G104 — (€127 3€21— 6€41) Y20l }
+166[(—1+3€31— €4 J10. — (€11~ €21~ 3€31F €41) G20, 1+ d°[ (G104 +20i ) (— 15+ 34€31) G104

+(— 15611+ 5€511 34€31) 920, |+ 160] (— 4+ 9€31+ 2€41) Q10 + (—4€11+ 9€31+2€41) G20, |

+d*85(— 10x +2€31910x — €11920« + 2€31920¢ ) — (U10x + Faox )[ (— 10+ 15e3:+8€41)G1,

+ ( - l(kll— 3621+ 1%31"’ 8641) gzo]},

9119=2d(4+d){— 15d%(g10, *+ F20 ) >+ 6d" (G0 +F20i ) >+ 2(F10x + F20x )[16€— 3(Y10x + Y20c )]
+4d*[€(910x — 2920 ) + 6(F10 +F20i ) >+ 38(29 104 + G204 )]
+d°[3(G10x + G20k ) >+ 128(20 10, + F20i ) —4€(F10x +4920¢ )]
—4d°[6(Y10 + J20¢ ) — 3€(Ga0x + 4020 ) + S8+ 9(29 10 + Foox ) 1}
+d{15(J10 T Go0x ) >~ B€(G1ox +4020x ) + O — 128e+ 242910, + G20 )]}
—d*{45(32e+ 610, + 39205 ) + 3[ (G104 T Yook )+ 4€(3Y10x + 20204 ) 1}
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Uon=—[(—1+0d?)(—3)—4—d+4d*+d>]g10, [ 2(— 2+ d?) G0, — (4—3d+d?)Fp0, |
X{[6e3;+d%(—1+2e537) —2(1+e4) +3d(— 1+ 2€31+ €41) 19104
—[(2+3d+d?)ey;+(—2+d)e,— 66— 6dey;— 2d%ez,+ 24— 3d€sr) 9oy |
+d(4+d)[ —4+6e3,+d%(—2+3ey) + 6e4,+ d(— 8+ 12e5,+ 3e41) 1950,
+[2+d%(1—2e,,) —4e;— 4ey;— 6ey;+ d(1—8e— 2€,,+ 6€31— 3€41) + 1884119105 920x
+[(2+d+d?)ep + (— 10+ d)ey— 3(4eg+ 2d ey, + dey— 4ey + 2deyr) 195, )
X{=8(2+d)e+3[—1+d)*(1+d)(2g10, + Go0x ) 1},

0210=3(—1+d)?d(4+5d+d?)(—4—d+4d%+d>) 910, [2(— 2+ d?) Q10 — (4— 3d+d?) gy, |
+d(4+d)[—8(2+d)e+3(—1+d)2(1+d)(2910, + G20 )]

X[d?(85+3010x ) — 4(G10x + 920 ) — 30%(G10x + 2920, ) + d* (G104 + 4920, ) + A(166+ 37104 + 60204 )1,

G1on=3(— 1+ d*) 910, (Bd®(G10x + Yo0x )[(— 1+ 3€35+ 2€42) G105 — (2815 €20~ €3~ 2€42) G oy |
—8(910x + 920 ) (1+3€30~€42) Y10, — (€12~ €22~ €32 €42) Y204 |
+d%(G10x + G20x )[ — 3€12020 +5€32 G10x + G20x )1+ A3 — [ (G104 + Fo0x ) (3(1+3€3— 2847 U104
+[—4epp+3(ex+3e3— 2€47) 1920k }) + 8L (— 1+ 10035+ 3€42) G104 — (5€12+ €25~ 10835~ 3€42) G204 |
+20{ = (910x + Y20 )[ (= 3+ 6€42) G104 — (€12 3822~ 6€42) G0y I}
+ 168 (1+3€3,— €42) 9104 — (B12— €20 3€35+ €42) G20 ]+ d*{ —[(G10x + T2 ) (— 3+ 1565+ 8€42) U0
+(—10e1,— 3e5y+ 1535+ 8€42) Uoox I} + 86 — (€120204 ) T 2€32(J10x T F204 )]
+d%{(910x + Go0x )[(5+34e35) G104 + (— 15015+ 5ept 34€32) oo |

+166[ 9€3/910x + 920k ) T 2( — 2€1020x + €42(F10x + 20k ) 1}

912d= Y114 »
Uon=—{(—1+d*)[~3(—4—d+4d*+d% g0, [2(—2+d*)g10, — (4—3d+d?)Fp0 ]
X[ (24 6e3+ 2d%eg3,— 245+ d(— 1+ 6€3,+ 3€42) 1010, —[(2+3d+d?) ey,
+(—2+d)ey— 6e5,— 6des,— 2d%eg,+ 2€40— 3d€45] o0y |
+d(4+d){[ — 4+ 6eg,+ 3d%eg,+ 6e4p+ d(— 2+ 12855+ 3€42) 195,
—(10+4e;,+ 2d%e; ,+ eyt 6eg,— 18845+ d( — 1+ 8€;+ 2€5,— 6€35+ 3€42) } T 10 U20x
+[(2+d+d?)ep+ (— 10+ d) ey— 3(4egpt 2deg,+ d?egp— 4eypt 2dey,) 1950

X[—8(2+d)e+3(—1+d)*(1+d) (2010 + G20x )],
9224~ 921d »
€11n=(9q— 9sP2)[ 9pds(MsNo—M3N3) P1 + 10, Jol (MaN1+MyN3) py— (Mgny+mMyNny)ps],

4= 0g2(MyNy—M3N3) P3P+ Gooy 9o9ql — (Mgn1+mMyng)ps+(M3ny+myn,)ps]
+ 920k 9oTsl (M1N3P2+MyN;(— Py +P2) [P4+ M3y P1Ps— Mg PoPs—MiNPoPs+ MyP1(N3Ps—NoPs))

+ 0k{9q9sl — (MyN) + M3N3 ]+ Gogk Go(MaN1 P4 — MaN3P4— M3N; Ps+ MyNoPs) |,
€10 = (9q— 9sP2)[ 9pds(MaNz—M3zN3) P2+ Gagx Go( — MaN1Ps+MyoNzP4s+ M3niPs—MyNoPs) |,
€1n= (9= 9sP1)[ 9p3s(MaNz — M3N3) P1 + G104 Go(MaN1 P4+ M1N3P4 — M3N;1 Ps— M1N2Ps) |,
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€200 = (k= 9sP1) (9pds(MaNz — M3N3) P2+ G10x Gol — MaN1 P4+ MaN3P4+ M3NyPs—MyN5Ps) |,
€310 = 920« IpTsP1( — GkMaN 1+ gqMyNy +ggMiN3+ giMoNz+ gsMyaN P — GsMuNzPy — GsMyN1 P — gsMaNzPy)
+010x {9sP1[ 92(MyN 1 + M1N3) P2 — Gagy Go( My +My) N1 Ps ]+ Gid — [9q9s(MgN1+MiN3) [+ oo, Go( M1+ My)N1Ps)
€320 = 920« IpTsP2( — GkM4N1 + gqMyNy + ggMy N3+ gxMoNg+ gsMyNy Py — GsMoNzPy — 9sMaN1 P — gsMqN3p2)
+ 910x [ 9kFq0s(Man —MyNng) + 93(— MyNy+MyN3) P1P2— Yoox 909q(M1+My)N1Ps+ oo, Gods(M1+My)N1PoPs],
€41n= 920« IpTsP1( — GkM3N1 + gqM3Ny + ggMyNa+ giMoNo + gsMsny P — GsMeNo Py — 9sMaN P — gsMqNop2)
+ 9104 (9sP1[ 95(MaN 1+ M1N2) Py — Yoo, Jo(My+ M) N1 P41+ Gy — [949s(M3Ny+mMyNy) ]+ Goo, Go( Mg+ My)N1P4}),
€42n= 920« IpTsP2( — GkMzN1 + gqMzny + ggMyNa+ giMoNo + gsMsN Py — §sMaNo Py — GsMaN P — gsMaNop2)

+ 910k [ GkGq9s(M3ny —myny) + 93(—M3Ny +MyNy) P1P2— Goos 909q(M1+My)N1Ps+ G20, GoJs(M1+M3)N1P2P4],

where pe= — 24d— 52d%+ 4d>+ 50d*+ 20d°+ 2d°,
|1=24+16d - 22d°~ 16d°~2d*, P, =96+ 16d— 1922 — 5603+ 92d*+ 4005+ 4,
m, = 48— 16d — 5202+ 16d°+ 4d*, q1= 96+ 16d — 156d%— 38d°+ 58d*+ 22d°+ 2,
m,= —48-80d -+ 60d*+96d°*— 10d*— 16d°— 2d°, r,= 24— 4d— 3602+ 2d3+ 12d%+ 245,
my= —48+ 112+ 32d%— 130d3+ 14d*+ 18d°+ 2d5°,  y= 12+ 2d— 18d%— 3d3+ 6+ d,
m, =48+ 104d— 62d%— 127d>+ 11d*+ 23d°+ 3d°, 4= 12— 6d— 182+ 5%+ 64+ o,
n, =48+ 56d— 40d2—56d°— 8d*,

0s=010« T 9204
n,=48+104d—32d%— 104d3— 16d*,

9p=010« + 0804/ G20x -
ng= — 48+ 16d+ 10d2— 41d3+ 35d*+ 25d°+ 3d5,

, . k= (920, P2)/ G20 + Y20¢ P+ G10x P74
0,=26—7d— 2702+ 7d%+ d*,

gq:(—(dggo*|1)+910k(910* P3+ 920 91))/ 0% »
0,=—12+12d?,
90=02/J20x -
p;=— 96— 64d -+ 88d2+ 64d3+ 8d*,

The stability of the fixed point is determined by the
p,= — 96— 64d+ 124d%+ 82d°>— 26d*— 18d°— 2d°®, 2% 2 block of the stability matrix, which corresponds to the
B functions of a5 and y;. The eigenvalue which responds

p3=96+40d — 140d?— 60d3+ 42d*+ 20d°+ 2d°,

for instability has the form

p,= 144+ 96d— 13242 —96d%— 12d*, N=No+ N+ \yay,

ps= 144+ 96d — 186d%— 12303+ 39d* + 27d°+ 3d°, where

:dgzo*(glo* + 020 )01 — Vi1 G10x Uo0x '1+ 020 T2+ O50n I3
0 8d(12+ 8d2+ d2) g0, ’

_Mn
1 )\d 1
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M1n= 0030, (J114 + 921, ) 01 Via+ 920e [~ toF Gr1e VI (G20¢ T 1+ 20100 T2) 1+ Doz VEa (Vi1 — 920 T 21 G50 I3),
Ng=8d(12+8d+d?)g%, iy,

_Aen
2 )\d H

N2n= 0030, (J12 + G224 )01 i1+ 920e [~ tat G12e Vi1 (G20e T 1+ 20100 T2) 1+ Doz Via (Vi1 — O30T 21 G50 I3),

with t3=2(d%020 (J10x + 9204 )[F12¢ F20x + (J10x T 2020x ) 9224 |
4202 2,2 a2
t1=d°020: (910 * G20, )"(01~403) X (0§—403)+ (104 9204 1+ G504 2+ U304 T 3)
—2d0920, 01(G10x T Y20+ ) ( . Y
X r r r

X(glmgzmr1+gio*r2+g§okr3) 9124 920% M1 7 910« 922 F1 T 20105 G124 I 2

+(Q10¢ Y20k T 17 G0k T2+ 9204 T 3) 2 + 20204 9224 T3) — d01{G 30, 0224 T 2+ U0 9204 [ 3T 124 T2
to=2(d%0204 (J10x + 9204 ) (F11x F20x + (J10x +2922*(r1+rz)]+g§o*[4gzz*r3+912*(r1+r3)]

+ 2020 )21 )(05 = 403) + (104 U204 T 1+ Ul T2
+ ggo* r3)(911% 920« M1 7 910¢ 9214 F 17 20104 G114 T2

+2020¢ 9214 T3) —d01{ 030, U1 T2+ O50s G20 [30114 T2 The borderline dimensiod, is defined as a solution of the

+010¢ 950 [ 20124 (11T 2) + 300, (11 +13)1}).

3 equation
2901, (r1+12) 1+ 020, [49214 T3+ G114 (F1+13) ]
+ 010x 0504 [ 2012, (11 72) + 3022 (r1+13) T}, N(d¢,€,aq,a7)=0.
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