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Stability of scaling regimes indÐ2 developed turbulence with weak anisotropy

M. Hnatich,1 E. Jonyova,1,2 M. Jurcisin,1,2 and M. Stehlik1
1Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 04011 Kosice, Slovakia

2Joint Institute for Nuclear Research, 141980 Dubna, Russia
~Received 12 February 2001; published 22 June 2001!

Fully developed turbulence with weak anisotropy is investigated by means of the renormalization group
approach and double expansion regularization for dimensionsd>2. Some modification of the standard mini-
mal subtraction scheme has been used to analyze the stability of the Kolmogorov scaling regime which is
governed by the renormalization group fixed point. This fixed point is unstable atd52; thus the infinitesimally
weak anisotropy destroys the above scaling regime in two-dimensional space. The restoration of the stability of
this fixed point, under a transition fromd52 to 3, is demonstrated at a borderline dimension 2,dc,3. The
results are in qualitative agreement with results recently obtained in the framework of a typical analytical
regularization scheme.
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I. INTRODUCTION

A traditional approach to the description of fully deve
oped turbulence is based on the stochastic Navier-Sto
equation@1#. The complexity of this equation leads to gre
difficulties, which do not allow one to solve it even in th
simplest case when one assumes the isotropy of the sy
under consideration. On the other hand, isotropic turbule
is almost a delusion, and if it exists it is still rather rar
Therefore, if one wants to model more or less realistica
developed turbulence, one is pushed to consider anisotr
cally forced turbulence rather than isotropically forced t
bulence. This, of course, rapidly increases the complexity
the corresponding differential equation, which itself has
involve the part responsible for a description of the anis
ropy. An exact solution of the stochastic Navier-Stokes eq
tion does not exist, and one is forced to find some conven
methods to treat the problem at least step by step.

A suitable and also powerful tool in the theory of deve
oped turbulence is the so-called renormalization group~RG!
method.1 During the last two decades the RG technique w
widely used in this field of science, and gives answers
some principal questions~e.g., the fundamental descriptio
of the infrared~IR! scale invariance!, and is also useful for
calculations of many universal parameters~e.g., critical di-
mensions of the fields and their gradiens, etc.!. A detailed
survey of these questions can be found in Refs.@4–6#, and
references therein.

In early papers, the RG approach was applied only
isotropic models of developed turbulence. However,
method can also be used~with some modifications! in the
theory of anisotropically developed turbulence. A cruc
question immediately arises here: whether the principal pr
erties of the isotropic case and the anisotropic case are
same, at least at the qualitative level. If they are, then i
possible to consider the isotropic case as a first step in

1Here we consider the quantum-field renormalization group
proach@2# instead of the Wilson renormalization group techniq
@3#.
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investigation of real systems. In this type of transition fro
isotropically developed turbulence into the anisotropica
developed turbulence, we have to learn whether the sca
regime remains stable under this transition. In other wor
do the stable fixed points of the RG equations remain sta
under the influence of anisotropy?

During the last decade a few papers have appeare
which the above question was considered. In some case
was found that stability actually takes place~see, e.g., Refs
@7,8#!. On the other hand, the existence of systems with
such a stability has also been proven. As shown in Ref.@9#,
in anisotropically magnetohydrodynamically developed t
bulence a stable regime generally does not exist. In R
@8,10#, d-dimensional models withd.2 were investigated
for two cases, weak anisotropy@8# and strong anisotropy
@10#, and it was shown that the stability of the isotropic fixe
point is lost for dimensionsd,dc52.68. It was also shown
that the stability of the fixed point, even for dimensiond
53, takes place only for sufficiently weak anisotropy. T
only problem in these investigations is that it is impossible
use them in the cased52, because new ultraviolet~UV!
divergences appear in the Green functions, when one con
ers d52, and they were not taken into account in Re
@8,10#.

In Ref. @11#, a correct treatment of the two-dimension
isotropic turbulence was given. The correctness in the ren
malization procedure was reached by introducing a new lo
term ~with a new coupling constant! into the models, which
allows one to remove additional UV divergences. From t
point of view, the results obtained earlier for anisotropica
developed turbulence, presented in Ref.@12# and based on
Ref. @13# ~the results of the last paper are in conflict wi
Ref. @11#! cannot be considered as correct because they
inconsistent with the basic requirement of the UV renorm
ization, namely, with the requirement of the localness of
counterterms@14,15#.

The authors of a recent paper@16# used the double-
expansion procedure introduced in Ref.@11# ~this procedure
is a combination of the well-known Wilson dimension
regularization procedure and an analytical one! and the mini-
mal substraction~MS! scheme@17# for an investigation of
developed turbulence with weak anisotropy ford52. In such
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a perturbative approach the deviation of the spatial dim
sion fromd52 andd5(d22)/2, and that of the exponent o
the powerlike correlation function of random forcing fro
their critical valuese, play the roles of expansion paramete

The main result of the paper was the conclusion that
two-dimensional~2D! fixed point is not stable under wea
anisotropy. It means that 2D turbulence is very sensitive
the anisotropy, and no stable scaling regimes exist in
case. In the cased53, for both isotropic and anisotropi
turbulence, as mentioned above, the existence of a st
fixed point, which governs the Kolmogorov asymptotic r
gime, was established by means of the RG approach by u
the analytical regularization procedure@7,8,10#. One can per-
form an analytical continuation fromd52 to the three-
dimensional turbulence~in the same sense as in the theory
critical phenomena!, and verify whether the stability of the
fixed point~or, equivalently, the stability of the Kolmogoro
scaling regime! is restored. From the analysis made in R
@16#, it follows that it is impossible to restore the stable r
gime by transition from dimensiond52 to 3. We suppose
that the main reason for the above described discrepanc
related to the straightforward application of the standard
scheme. In the standard MS scheme one works with a pu
divergent part of the Green functions only, and in concr
calculations its dependence on the space dimensiond, result-
ing from the tensor nature of these Green functions, is
glected~see Sec. III!. In the case of isotropic models, th
stability of the fixed points is independent of dimensiond.
However, in anisotropic models the stability of fixed poin
depends on the dimensiond, and consideration of the tenso
structure of Feynman graphs in the analysis of their div
gences becomes important.

In the present paper we suggest applying a modified
scheme in which we keep thed dependence of the UV di
vergences of graphs. We affirm that after such a modifica
the d dependence is correctly taken into account, and can
used to investigate whether it is possible to restore the
bility of the anisotropically developed turbulence for som
dimensiondc when going from a two-dimensional system
a three-dimensional one. In the limit of infinitesimally wea
anisotropy for the physically most reasonable value oe
52, the value of the borderline dimension isdc52.44. Be-
low the borderline dimension, the stable regime of the fix
point of the isotropically developed turbulence is lost by
fluence of weak anisotropy.

It should be mentioned that a similar idea of a ‘‘geomet
factor’’ was used in Ref.@18# in a RG analysis of the
Burgers-Kardar-Parisi-Zhang equation, but the reason
keeping thed dependence of divergent parts of the grap
was to take correctly into account the finite part of the o
loop Feynman diagrams in the two-loop approximation.
the present paper, we shall not discuss this in detail, bec
the critical analysis of the results obtained in Ref.@18# was
given in Ref.@19#.

The paper is organized as follows. In Sec. II we give
quantum field functional formulation of the problem of ful
developed turbulence with weak anisotropy. A RG analy
is given in Sec. III, where we discuss the stability of t
fixed point obtained under weak anisotropy. In Sec. IV
01631
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discuss our results. Appendix A contains expressions for
divergent parts of the important graphs. Finally, Appendix
contains analytical expressions for the fixed point, and
equation which describes its stability in the limit of wea
anisotropy.

II. DESCRIPTION OF THE MODEL: UV DIVERGENCIES

In this section we give a description of the model. A
already discussed in Sec. I, we work with fully develop
turbulence, and assume a weak anisotropy of the sys
This means that the parameters that describe deviations
the fully isotropic case are sufficiently small, and allow o
to forget about corrections of higher degrees~than linear!
which are made by them.

In the statistical theory of anisotropically developed tu
bulence, the turbulent flow can be described by a rand
velocity field vW (xW ,t), and its evolution is given by the ran
domly forced Navier-Stokes equation

]vW

]t
1~vW •¹W !vW 2n0DvW 2 fWA5 fW , ~2.1!

where we assume the incompressibility of the fluid, which
given mathematically by the well-known conditions¹W •vW

50 and¹W • fW50. In Eq. ~2.1! the parametern0 is the kine-
matic viscosity~hereafter all parameters with a subscript
denote bare parameters of unrenormalized theory; see
low!; the termfWA is related to anisotropy, and will be spec
fied later. The large-scale random force per unit massfW is
assumed to have Gaussian statistics defined by the aver

^ f i&50, ^ f i~xW1 ,t ! f j~xW2 ,t !&5Di j ~xW12xW2 ,t12t2!.
~2.2!

The two-point correlation matrix

Di j ~xW ,t !5d~ t !E ddkW

~2p!d
D̃ i j ~kW !exp~ ikW•xW ! ~2.3!

is convenient to parametrize as@7,9#

D̃ i j ~kW !5g0n0
3k42d22e@~11a10jk

2!Pi j ~kW !1a20Ri j ~kW !#,
~2.4!

where a vectorkW is the wave vector,d is the dimension of the
space~in our case, 2<d), ande>0 is a dimensionless pa
rameter of the model. If the dimension of the system is tak
as d.2, then the physical value of this parameter ise52
~the so-called energy pumping regime!. The situation is more
complicated whend52. In this case new integrals of motio
arise, namely, the enstrophy, and all its powers~for details,
see Ref.@20#! which leads to ambiguity in the determinatio
of the inertial range, and this freedom is given in the R
method by the value of the parametere. The valuee53
corresponds to the so-called enstrophy pumping regime. T
problem of uncertainty cannot be solved in the framework
the RG technique. On the other hand, the value ofe is not
2-2
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STABILITY OF SCALING REGIMES IN d>2 . . . PHYSICAL REVIEW E 64 016312
important for the stability of the fixed point whend52.
Thus, from our point of view, the value ofe in the cased
52 is not important. Its valuee50 corresponds to a loga
rithmic perturbation theory for a calculation of the Gre
functions wheng0, which plays the role of a bare couplin
constant of the model, becomes dimensionless. The prob
of continuation frome50 to physical values was discusse
in Ref. @21#. The (d3d) matricesPi j andRi j are the trans-
verse projection operators, and in wave-number space
defined by the relations

Pi j ~kW !5d i j 2
kikj

k2
, Ri j ~kW !5S ni2jk

ki

k D S nj2jk

kj

k D ,

~2.5!

wherejk is given by the equationjk5kW•nW /k. In Eq. ~2.5!,
the unit vectornW specifies the direction of the anisotrop
axis. The tensorD̃ i j , given by Eq.~2.4!, is the most genera
form with respect to the condition of incompressibility of th
system under consideration, and contains two dimension
free parametersa10 and a20. From the positiveness of th
correlator tensorDi j , one immediately obtains restriction
on the above parameters, namely,a10>21 anda20>21. In
what follows we assume that these parameters are s
enough, and generate only small deviations from the isotr
case.

Using the well-known Martin-Siggia-Rose formalism
the stochastic quantization@22–25#, one can transform the
stochastic problem@Eq. ~2.1!# with the correlator@Eq. ~2.3!#
into the quantum field model of fieldsvW andvW 8. HerevW 8 is
independent of thevW auxiliary incompressible field, which
we have to introduce when transforming the stochastic pr
lem into a functional form.

The action of the fieldsvW andvW 8 is given in the form

S5
1

2E ddxW1 dt1 ddxW2 dt2@v i8~xW1 ,t1!

3Di j ~xW12xW2 ,t12t2!v j8~xW2 ,t2!#1E ddxW dt$vW 8~xW ,t !

3@2] tvW 2~vW •¹W !vW 1n0¹W 2vW 1 fWA#~xW ,t !%. ~2.6!

The functional formulation gives the possibility of usin
quantum field theory methods, including the RG technique
solve the problem. By means of the RG approach it is p
sible to extract large-scale asymptotic behavior of the co
lation functions after an appropriate renormalization pro
dure which is needed to remove UV divergences.

Now we can return to give an explicit form of the anis
tropic dissipative termfWA. Whend.2, the UV divergences
are only present in the one-particle-irreducible Green fu
tion ^vW 8vW &. To remove them, one needs to introduce into
action, in addition to the countertermvW 8¹W 2vW ~the only
counterterm needed in the isotropic model!, the terms

vW 8(nW •¹)2vW , (nW •vW 8)¹W 2(nW •vW ), and (nW •vW 8)(nW •¹W )2(nW •vW ).
These additional terms are needed to remove diverge
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related to anisotropic structures. In this case (d.2), one can
use the above action@Eq. ~2.6!# with @Eq. ~2.4!# to solve the
anisotropic turbulent problem. Therefore, in order to arrive
a multiplicatively renormalizable model, we have to take t
term fWA in the form

fWA5n0@x10~nW •¹W !2vW 1x20nW ¹W 2~nW •vW !1x30nW ~nW •¹W !2~nW •vW !#.
~2.7!

Bare parametersx10, x20, andx30 characterize the weight o
the individual structures in Eq.~2.7!.

A more complicated situation arises in the specific ca
d52, where new divergences appear. They are related to
1-irreducible Green function̂vW 8vW 8&, which is finite when
d.2. Here one comes to the problem of how to remo
these divergences, because the term in our action, which
tains a structure of this type, is nonlocal, name

vW 8k42d22evW 8. The only correct way of solving the abov
problem is to introduce a new local term of the formvW 8¹W 2vW 8
~isotropic case! into the action @11#. In the anisotropic
case, we have to introduce additional counterter

vW 8(nW •¹)2vW 8, (nW •vW 8)¹W 2(nW •vW 8) and (nW •vW 8)(nW •¹W )2(nW •vW 8).
In Refs.@11,13# a double-expansion method with a simult
neous deviation 2d5d22 from the spatial dimensiond52,
and also a deviatione from thek2 form of the forcing pair
correlation function proportional tok222d22e, were pro-
posed. We shall follow the formulation founded on the tw
expansion parameters in the present paper.

In this case, the kernel@Eq. ~2.4!# corresponding to the
correlation matrixDi j (xW12xW2 ,t22t1) in action ~2.6! is re-
placed by the expression

D̃ i j ~kW !5g10n0
3k222d22e@~11a10jk

2!Pi j ~kW !1a20Ri j ~kW !#

1g20n0
3k2@~11a30jk

2!Pi j ~kW !

1~a401a50jk
2!Ri j ~kW !#. ~2.8!

HerePi j andRi j are given by relations~2.5!; g20, a30, a40,
anda50 are new parameters of the model; and the param
g0 in Eq. ~2.4! is now renamedg10. One can see that in suc
a formulation the countertermvW 8¹W 2vW 8 and all anisotropic
terms can be taken into account by a renormalization of
coupling constantg20, and the parametersa30, a40, and
a50.

It has to be stressed that the last term of thefWA in Eq.
~2.7!, which is characterized by the parameterx30, and the
term of the correlation matrix@Eq. ~2.8!#, related to the pa-
rametera50, are of the orderO(n4), in contrast to the others
which are eitherO(n0) ~the isotropic terms! or O(n2). Be-
cause we work in the limit of weak anisotropy, this fa
causes, as a consequence, the values at the fixed poi
vanish. On the other hand, the eigenvalues of the stab
matrix, which correspond to the parametersx30 anda50, are
of the same order,O(«), as the eigenvalues which corre
spond to the other parameters; they play important role
the determination of stability of the regime~see details in
Sec. III!.
2-3
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Action ~2.6!, with the kernelD̃ i j (kW ) @Eq. ~2.8!#, is given
in a form convenient for a realization of the quantum fie
perturbation analysis with the standard Feynman diag
technique. From the quadratic part of the action, one obt
the matrix of bare propagators. Their wave-numbe
frequency representation is presented in Fig. 1, where

D i j
vv~kW ,vk!52

K3

K1K2
Pi j 1

1

K1@K21K̃~12jk
2!#

3F K̃K3

K2
1

K̃@K31K4~12jk
2!#

@K11K̃~12jk
2!#

2K4GRi j ,

D i j
vv8~kW ,vk!5

1

K2
Pi j 2

K̃

K2@K21K̃~12jk
2!#

Ri j , ~2.9!

with

K15 ivk1n0k21n0x10~nW •kW !2,

K252 ivk1n0k21n0x10~nW •kW !2,

K352g10n0
3k222d22e~11a10jk

2!2g20n0
3k2~11a30jk

2!,

K452g10n0
3k222d22ea202g20n0

3k2~a401a50jk
2!,

K̃5n0x20k
21n0x30~nW •kW !2. ~2.10!

The propagators are written in a form suitable for stro
anisotropy when the parametersa i0 are not small. In the cas
of weak anisotropy, it is possible to make an expansion,
to work only with linear terms with respect to all paramete
which characterize anisotropy. The interaction vertex in
model is given in Fig. 2. Here the wave vectorkW corresponds
to the fieldvW 8. Now one can use the above introduced Fe
man rules for a computation of all needed graphs.

III. RG ANALYSIS AND STABILITY OF THE
FIXED POINT

Using the standard analysis of quantum field theory~see,
e.g., Refs.@4,6,14,15#!, one can find that the UV divergence

FIG. 1. The propagators of the model.

FIG. 2. The vertex of the model.
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of one-particle-irreducible Green functionŝvv8& IR and
^v8v8& IR are quadratic in the wave vector. The last one ta
place only in the case when the dimension of the space
All terms needed for removing the divergences are includ
in action~2.6!, with Eq. ~2.7! and kernel~2.8!. This leads to
the fact that our model is multiplicatively renormalizabl
Thus one can immediately write down the renormalized
tion in the wave-number–frequency representation, with¹W

→ ikW ,] t→2 ivk ~all needed integrations and summations a
assumed!:

SR~v,v8!5 1
2 v i8$g1n3m2ek222d22e@~11a1jk

2!Pi j 1a2Ri j #

1g2n3m22dk2@~Z51Z6a3jk
2!Pi j

1~Z7a41Z8a5jk
2!Ri j #%v j8

1v i8$~ ivk2Z1nk2!Pi j 2nk2@Z2x1jk
2Pi j

1~Z3x21Z4x3jk
2!Ri j #%v j1

1
2 v i8v jv lVi j l ,

~3.1!

wherem is a scale setting parameter with the same canon
dimension as the wave number. Quantitiesgi , x i , a3 , a4 ,
a5, and n are the renormalized counterparts of bare on
andZi are renormalization constants which are expressed
the UV divergent parts of the functionŝvv8& IR and
^v8v8& IR . Their general form in the one loop approximatio
is

Zi512FiP i
d,e . ~3.2!

In the standard MS scheme the amplitudesFi are only
some functions ofgi , x i , a3 , a4 , a5, and are independen
of d ande. The termsP i

d,e are given by linear combination
of the poles 1/2e, 1/2d, and 1/(4e12d) ~for d→0 ande
→0). The amplitudesFi5Fi

(1)Fi
(2) are a product of two

multipliers Fi
(1) andFi

(2) . One of them, say,Fi
(1) is a multi-

plier originating from the divergent part of the Feynman d
grams, and the second one,Fi

(2) , is connected only with the
tensor nature of the diagrams. We explain this using the
lowing simple example. Consider a UV-divergent integra

I ~k,n![ninjklkmE ddq
1

~q21m2!112d

3S qiqjqlqm

q4
2

d i j qlqm1d i l qjqm1d j l qiqm

3q2 D
~summations over repeated indices are implied!, wherem is
an infrared mass. It can be simplified as

I ~k,n![ninjklkmSi j lmE
0

`

dq2
q2d

2~q21m2!112d
,

where
2-4
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Si jlm5
Sd

d~d12! S d i j d lm1d i l d jm1d imd j l

2
~d12!

3
~d i j d lm1d i l d jm1d imd j l ! D ,

E
0

`

dq2
q2d

2~q21m2!112d
5

G~d11!G~d!

2m2dG~2d11!
,

and Sd52pd/2/G(d/2) is the surface of unit the
d-dimensional sphere. The purely UV divergent part ma
fests itself as the pole in 2d5d22; therefore, we find

UVdiv. part of I 5
1

2d
@F1

(2)k21F2
(2)~nk!2#,

whereF1
(2)5F2

(2)/25(12d)Sd/3d(d12) (F1
(1)5F2

(1)51).
In the standard MS scheme one putsd52 in F1

(2) and
F2

(2) ; therefore, thed dependence of these multipliers is i
nored. For theories with vector fields and, consequently, w
tensor diagrams, where the sign of values of fixed po
and/or their stability depend on the dimensiond, the proce-
dure, which eliminates the dependence of multipliers of
typesF1

(2) andF2
(2) on d, is not completely correct becaus

one is not able to control the stability of the fixed point wh
d53. In the analysis of Feynman diagrams, we propose
slightly modify the MS scheme in such a way that we ke
the d dependence ofF in Eq. ~3.2!. The following calcula-
tions of RG functions (b functions and anomalous dimen
sions! allow one to arrive at results which are in qualitati
agreement with the results obtained recently in the fram
work of the simple analytical regularization scheme@10#, i.e.
we obtain a fixed point which is not stable ford52, but
whose stability is restored for a borderline dimension
,dc,3.

The transition from action~2.6! to the renormalized one
@Eq. ~3.1!# is given by the introduction of the renormalizatio
constantsZ,

n05nZn , g105g1m2eZg1
, g205g2m22dZg2

,

x i05x iZx i
, a ( i 12)05a i 12Za i 12

, ~3.3!

where i 51, 2, and 3. By comparison of the correspondi
terms in action~3.1! with definitions of the renormalization
constantsZ for parameters~3.3!, one can immediately write
down relations between them. We have

Zn5Z1 ,

Zg1
5Z1

23 ,

Zg2
5Z5Z1

23 , ~3.4!

Zx i
5Z11 iZ1

21 ,

Za i 12
5Zi 15Z5

21 ,
01631
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where againi 51, 2, and 3.
In the one-loop approximation, divergent one-irreducib

Green functionŝv8v& IR and^v8v8& IR are represented by th
Feynman graphs, which are shown in Fig. 3. The diverg
parts of these diagramsGv8v8 andGv8v have the structure

Gv8v85
1

2
n3AF g1

2

4e12d
@a1d i j k

21a2d i j ~nW •kW !21a3ninjk
2

1a4ninj~nW •kW !2#1
g1g2

2e
@b1d i j k

21b2d i j ~nW •kW !2

1b3ninjk
21b4ninj~nW •kW !2#1

g2
2

22d
@c1d i j k

2

1c2d i j ~nW •kW !21c3ninjk
21c4ninj~nW •kW !2#G ,

Gv8v52nAF g1

2e
@d1d i j k

21d2d i j ~nW •kW !21d3ninjk
2

1d4ninj~nW •kW !2#1
g2

22d
@e1d i j k

21e2d i j ~nW •kW !2

1e3ninjk
21e4ninj~nW •kW !2#G , ~3.5!

where parameterA and functionsai , bi , ci , di , andei are
given in Appendix A (i 51, . . . ,4). Thecounterterms are
built up from these divergent parts, which lead to the follo
ing equations for renormalization constants:

Z1512AS g1

2e
d12

g2

2d
e1D ,

Z11 i512
A

x i
S g1

2e
d11 i2

g2

2d
e11 i D ,

Z5511
A

2 S g1
2

g2

a1

4e12d
1

g1

2e
b12

g2

2d
c1D , ~3.6!

Z51 i511
A

2a i 12
S g1

2

g2

ai 11

4e12d
1

g1

2e
bi 112

g2

2d
ci 11D ,

i 51,2,3.

From these expressions, one can define the correspon
anomalous dimensionsg i5m]m ln Zi for all renormalization
constantsZi ~the logarithmic derivativem]m is taken at fixed
values of all bare parameters!. Theb functions for all invari-
ant charges~running coupling constantsg1 and g2, and pa-
rameters x i and a i 12) are given by the relationsbgi

FIG. 3. Divergent one-irreducible Green functions in the on
loop approximation.
2-5
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5m]mgi ( i 51,2), bx i
5m]mx i , and ba i 12

5m]ma i 12 ( i

51,2,3). Now using Eqs.~3.4! and definitions given above
one can immediately write theb functions in the forms

bg1
52g1~2e1gg1

!5g1~22e13g1!,

bg2
5g2~2d2gg2

!5g2~2d13g12g5!,

~3.7!
bx i

52x igx i
52x i~g i 112g1!,

ba i 12
52a i 12ga i 12

52a i 12~g i 152g5!, i 51,2,3,

where

g15A~g1d11g2e1!,

g i 115
A

x i
~g1di 111g2ei 11!,

~3.8!

g552
A

2 S g1
2

g2
a11g1b11g2c1D ,

g i 1552
A

2a i 12
S g1

2

g2
ai 111g1bi 111g2ci 11D , i 51,2,3.

By substitution of the anomalous dimensionsg i @Eq. ~3.8!#
into expressions for theb functions, one obtains

bg1
5g1@22e13A~g1d11g2e1!#,

bg2
5g2F2d13A~g1d11g2e1!1

A

2 S g1
2

g2
a11g1b11g2c1D G ,

bx i
52A@~g1di 111g2ei 11!2x i~g1d11g2e1!#,

ba i 12
52

A

2 F2S g1
2

g2
ai 111g1bi 111g2ci 11D

1a i 12S g1
2

g2
a11g1b11g2c1D G ,

i 51,2,3. ~3.9!

The fixed point of the RG equations is defined by t
system of eight equations

bC~C* !50, ~3.10!

where we denoteC5$g1 ,g2 ,x i ,a i 12%, i 51, 2, and 3, and
C* is the corresponding value for the fixed point. The
stability of the fixed point is determined by the positive re
parts of the eigenvalues of the matrix

v lm5S ]bCl

]Cm
D

C5C
*

l , m51, . . . ,8. ~3.11!

Now we have all necessary tools at hand to investigate
fixed points and their stability. Inthe isotropic caseall pa-
01631
l

e

rameters which are connected with the anisotropy are e
to zero, and one can immediately find the Kolmogorov fix
point, namely,

g1* 5
1

A

8~21d!e@2e23d~d1e!1d2~3d12e!#

9~211d!3d~11d!~d1e!
,

~3.12!

g2* 5
1

A

8~2422d12d21d3!e2

9~211d!3d~11d!~d1e!
,

whered5(d22)/2 and the correspondingv i j matrix has the
following eigenvalues

l1,25
1

6d~d21!
„6dd~d21!14e~223d12d2!

6$@6dd~12d!24e~223d12d2!#2

212d~d21!e@12dd~d21!14e~223d12d2!#%1/2
….

~3.13!

By a detailed analysis of these eigenvalues, we know tha
the interesting region of parameters, namely,e.0 and d
>0 ~it corresponds tod>2) the above computed fixed poin
is stable. In the limitd52, this fixed point is in agreemen
with that given in Refs.@11,16#.

When one considersthe weak anisotropy case, the situa-
tion becomes more complicated because of necessity to
all system ofb functions if one wants to analyze the stabili
of the fixed point. It is also possible to find analytical expre
sions for the fixed point in this more complicated case,
cause in the weak anisotropy limit it is enough to calcul
linear corrections ofa1 and a2 to all the quantities~see
Appendix B!.

To investigate the stability of the fixed point, it is nece
sary to apply it in matrix~3.11!. Analysis of this matrix
shows us that it can be written in the block-diagonal for
(636)(232). The 232 part is given by theb functions of
the parametersa5 and x3, and this block is responsible fo
the existence of the borderline dimensiondc because one o
its eigenvalues, sayl1(e,d,a1 ,a2), has a solutiondc
P^2,3& of the equationl1(e,dc ,a1 ,a2)50 for the defined
values ofe, a1, anda2. The following procedure has bee
used to find the fixed point: First we have used isotro
solution tog1 and g2 to compute the expressions fora i 12
andx i , i 51, 2, and 3. From equationsba5

50 andbx3
50,

one can immediately find thata5* 50 and x3* 50. After
this we can calculate expressions for the fixed point of
parametersa i 12 and x i , i 51 and 2. At the end, we com
back to the equations forg1 and g2, namely,bg1

50 and

bg2
50, and find linear corrections ofa1 anda2 to the fixed

point. The corresponding expressions for the fixed point a
the corresponding eigenvalue of the stability matrix resp
sible for the instability are given in Appendix B.

For the energy pumping regime (e52) anda15a250,
we found the critical dimensiondc52.44. This is the case
when one supposes only the fact of the anisotropy. Us
nonzero values ofa1 anda2 one can also estimate the influ
2-6
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ence of these parameters on the borderline dimensiondc . It
is interesting to calculate the dependence ofdc on the param-
etere too. In Fig. 4, this dependence and the dependenc
small values ofa1 and a2 are presented. As one can s
from this figure,dc increases whene→0, and the parameter
a1 anda2 give small corrections todc . In Fig. 5, the depen-
dences ofdc on a1 anda2 on e52 are presented.

IV. CONCLUSION

We have investigated the influence of the weak anisotr
on the fully developed turbulence using the quantum fi
RG double expansion method, and introduced a modi
minimal subtraction scheme in which the space dimens
dependence of the divergent parts of the Feynman diagr
is kept. We affirm that such a modified approach is corr
when one needs to compute thed dependence of the impor
tant quantities, and is necessary for restoration of the sta
ity of scaling regimes when one makes transition from
mension d52 to d53. We have derived analytica
expressions for the fixed point in the limit of weak aniso
ropy, and found an equation which manages the stability
this point as a function of the parameterse, a1, anda2, and
allows one to calculate the borderline dimensiondc . Below
this dimension the fixed point is unstable. In the limit case

FIG. 4. Dependence of the borderline dimensiondc on the pa-
rametere for concrete values ofa1 anda2.

FIG. 5. Dependence of the borderline dimensiondc on the pa-
rametersa1 anda2 for a physical valuee52.
01631
on

y
d
d
n
s

t

il-
-

f

f

infinitesimally small anisotropy (a1→0 anda2→0) and in
the energy pumping regime (e52), we have found the bor
derline dimensiondc52.44. We have also investigated thee
dependence ofdc for different values of the anisotropy pa
rametersa1 and a2, and also the dependence ofdc on the
relatively small values ofa1 and a2 for the physical value
e52.

ACNOWLEDGMENT

This work was partially supported by Slovak Academy
Sciences within Project No. 7232. M. H. gratefully acknow
edges the hospitality of the Laboratory of Theoretical Ph
ics at JINR, Dubna.

APPENDIX A

The explicit form of the parameterA and functionsai ,
bi , ci , di , andei ( i 51, . . . ,4) for the divergent parts o
diagrams~Fig. 3!

a15
1

2d~21d!~41d!~61d!
@248220d170d2130d3

221d4210d52d61a2~24116d222d2216d322d4!

1a1~24152d24d2250d3220d422d5!

1x1~236278d16d2175d3130d413d5!

1x2~236224d133d2124d313d4!

1x3~23629d136d219d3!#,

a25
1

4d~21d!~41d!~61d!
@a1~296264d188d2164d3

18d4!1a2~296264d1124d2182d3226d4218d5

22d6!1x1~144196d2132d2296d3212d4!

1x2~144196d2186d22123d3139d4127d513d6!

1x3~7216d287d229d3115d413d5!#,

a35a2 ,

a45
6x3~12d2!

~21d!~61d!
,

b15
1

d~21d!~41d!~61d!
@248220d170d2130d3

221d4210d52d61a5~1213d212d223d3!

1~a21a4!~1218d211d228d32d4!

1~a11a3!~12126d22d2225d3210d42d5!

1x1~236278d16d2175d3130d413d5!

1x2~236224d133d2124d313d4!

1x3~23629d136d219d3!#,
2-7
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b25
1

2d~21d!~41d!~61d!

3@~a11a3!~248232d144d2132d314d4!

1a5~22422d129d213d325d42d5!

1~a21a4!~248232d162d2141d3213d429d52d6!

1x1~144196d2132d2296d3212d4!

1x2~144196d2186d22123d3139d4127d513d6!

1x3~7216d287d229d3115d413d5!#,

b35b2 ,

b45
4~d221!~a523x3!

~21d!~61d!
,

c15
1

2d~21d!~41d!~61d!
@248220d170d2130d3

221d4210d52d61a5~2416d224d226d3!

1a4~24116d222d2216d322d4!

1a3~24152d24d2250d3220d422d5!

1x1~236278d16d2175d3130d413d5!

1x2~236224d133d2124d313d4!

1x3~23629d136d219d3!#,

c25
1

4d~21d!~41d!~61d!

3@a3~296264d188d2164d318d4!

1a5~24824d158d216d3210d422d5!

1a4~296264d1124d2182d3226d4218d522d6!

1x1~144196d2132d2296d3212d4!

1x2~144196d2186d22123d3139d4127d513d6!

1x3~7216d287d229d3115d413d5!#,

c35c2 ,

c45
~d221!~4a526x3!

~21d!~61d!
,

d15
1

4d~21d!~41d!~61d!
@24d214d2233d3113d4

19d51d61a2~1224d213d214d31d4!

1a1~212220d13d2119d319d41d5!

1x1~36142d218d2240d3218d422d5!

1x2~212116d115d2216d323d4!

1x3~619d26d229d3!#,
01631
d25
1

8d~21d!~41d!~61d!

3@a1~248116d152d2216d324d4!

1a2~48180d260d2296d3110d4116d512d6!

1x1~48264d260d2164d3112d4!

1x2~2482104d162d21127d3211d4223d523d6!

1x3~22d17d215d327d423d5!#,

d35
1

8d~21d!~41d!~61d!

3@a1~48156d240d2256d328d4!

1a2~248256d140d2156d318d4!

1x1~2482104d132d21104d3116d4!

1x2~48132d238d2225d329d427d52d6!

1x3~22d2d2221d31d42d5!#,

d45
x3~2101d110d22d3!

2~21d!~61d!
,

e15
1

4d~21d!~41d!~61d!

3@24d214d2233d3113d419d51d613da5~211d2!

1a4~1224d213d214d31d4!

1a3~212220d13d2119d319d41d5!

1x1~36142d218d2240d3218d422d5!

1x2~212116d115d2216d323d4!

1x3~619d26d229d3!#,

e25
1

8d~21d!~41d!~61d!

3@a3~248116d152d2216d324d4!

1a5~28d222d318d412d5!

1a4~48180d260d2296d3110d4116d512d6!

1x1~48264d260d2164d3112d4!

1x2~2482104d162d21127d3211d4223d523d6!

1x3~22d17d215d327d423d5!#,

e35
1

8d~21d!~41d!~61d!

3@24da5~211d2!1a3~48156d240d2256d328d4!

1a4~248256d140d2156d318d4!

1x1~2482104d132d21104d3116d4!

1x2~48132d238d2225d329d427d52d6!

1x3~22d2d2221d31d42d5!#,
2-8
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e45
6a5~12d2!1x3~2101d110d22d3!

2~21d!~61d!
,

A5
Sd

~2p!d~d221!
,

whereSd is a d-dimensional sphere given by the relation

Sd5
2pd/2

GS d

2D .

APPENDIX B

Here we present explicit analytical expressions for
fixed point in the weak anisotropy limit, and also the equ
tion which governs its stability. The basic forms of the fix
point are

g1* 5g10* 1g11* a11g12* a2 ,

g2* 5g20* 1g21* a11g22* a2 ,

a3 5e11a11e12a2 ,
*

01631
e
-

a4* 5e21a11e22a2 ,

x1* 5e31a11e32a2 ,

x2* 5e41a11e42a2 ,

a5* 50,

x3* 50,

where g10* and g20* are defined in Eq.~3.12!, and g11* ,
g12* , g21* , g22* , andei j , i 51, 2, 3, and 4,j 51 and 2, are
functions only of the dimensiond and parameterse and d
5(d22)/2. They have the forms

g11* 5
g11n

g11d
, g12* 5

g12n

g12d
, g21* 5

g21n

g22d
, g22* 5

g22n

g22d
,

e115
e11n

ed
, e125

e12n

ed
, e215

e21n

ed
, e225

e22n

ed
,

e315
e31n

gsed
, e325

e32n

gsed
, e415

e41n

gsed
, e425

e42n

gsed
,

where
g11n53~d221!g10* @d6~g10* 1g20* !~5e3123!g10* 23e11g20* 15e31g20* #13d5~g10* 1g20* !@~2213e3112e41!g10*

2~2e111e2123e3122e41!g20* #28~g10* 1g20* !@~2113e312e41!g10* 2~e112e2123e311e41!g20* #

1d3$2~g10* 1g20* !~2419e3126e41!g10* 1@24e1113~e2113e3122e41!#g20* %

18d@~25110e3113e41!g10* 2~5e111e21210e3123e41!g20* #

12d$2~g10* 1g20* !@~2116e41!g10* 2~e1113e2126e41!g20#%

116d@~2113e312e41!g10* 2~e112e2123e311e41!g20* #1d2@~g10* 1g20* !~215134e31!g10*

1~215e1115e21134e31!g20* #116d@~2419e3112e41!g10* 1~24e1119e3112e41!g20* #

1d4$8d~2g10* 12e31g10* 2e11g20* 12e31g20* !2~g10* 1g20* !@~210115e3118e41!g10*

1~210e1123e21115e3118e41!g20#%,

g11d52d~41d!$215d6~g10* 1g20* !216d7~g10* 1g20* !212~g10* 1g20* !@16e23~g10* 1g20* !#

14d4@e~g10* 22g20* !16~g10* 1g20* !213d~2g10* 1g20* !#

1d5@3~g10* 1g20* !2112d~2g10* 1g20* !24e~g10* 14g20* !#

24d3@6~g10* 1g20* !223e~g10* 14g20* !1d@8e19~2g10* 1g20* !#%

1d$15~g10* 1g20* !228e~g10* 14g20* !1d@2128e124~2g10* 1g20* !#%

2d2$4d~32e16g10* 13g20* !13@~g10* 1g20* !214e~3g10* 12g20* !#%,
2-9
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g21n52@~211d2!~23!242d14d21d3#g10* @2~221d2!g10* 2~423d1d2!g20* #

3$@6e311d2~2112e31!22~11e41!13d~2112e311e41!#g10*
2@~213d1d2!e111~221d!e2126e3126de3122d2e3112e4123de41!g20* #

1d~41d!@2416e311d2~2213e31!16e411d~28112e3113e41!#g10*
2

1@21d2~122e11!24e1124e2126e311d~128e1122e2116e3123e41!118e41#g10* g20*
1@~21d1d2!e111~2101d!e2123~4e3112de311d2e3124e4112de41!#g20*

2 %

3$28~21d!e13@211d!2~11d!~2g10* 1g20* !#%,

g21d53~211d!2d~415d1d2!~242d14d21d3!g10* @2~221d2!g10* 2~423d1d2!g20* #

1d~41d!2@28~21d!e13~211d!2~11d!~2g10* 1g20* !#

3@d2~8d13g10* !24~g10* 1g20* !23d3~g10* 12g20* !1d4~g10* 14g20* !1d~16d13g10* 16g20* !#,

g12n53~211d2!g10* „3d5~g10* 1g20* !@~2113e3212e42!g10* 2~2e121e2223e3222e42!g20* #

28~g10* 1g20* !@~113e322e42!g10* 2~e122e2223e321e42!g20* #

1d6~g10* 1g20* !@23e12g20* 15e32~g10* 1g20* !#1d3$2@~g10* 1g20* !~3~113e3222e42!g10*
1@24e1213~e2213e3222e42!#g20* %…18d@~21110e3213e42!g10* 2~5e121e22210e3223e42!g20* #

12d$2~g10* 1g20* !@~2316e42!g10* 2~e1213e2226e42!g20* #%

116d@~113e322e42!g10* 2~e122e2223e321e42!g20* #1d4$2@~g10* 1g20* !~23115e3218e42!g10*
1~210e1223e22115e3218e42!g20* #%18d@2~e12g20* !12e32~g10* 1g20* !#

1d2$~g10* 1g20* !@~5134e32!g10* 1~215e1215e22134e32!g20* #

116d@9e32~g10* 1g20* !12~22e12g20* 1e42~g10* 1g20* !#%,

g12d5g11d ,

g22n52$~211d2!@23~242d14d21d3!g10* @2~221d2!g10* 2~423d1d2!g20* #

3@~216e3212d2e3222e421d~2116e3213e42!#g10* 2@~213d1d2!e12

1~221d!e2226e3226de3222d2e3212e4223de42#g20* %

1d~41d!$@2416e3213d2e3216e421d~22112e3213e42!#g10*
2

2~1014e1212d2e1214e2216e32218e421d~2118e1212e2226e3213e42!%g10* g20*
1@~21d1d2!e121~2101d!e2223~4e3212de321d2e3224e4212de42!#g20*

2

3@28~21d!e13~211d!2~11d!~2g10* 1g20* !#,

g22d5g21d ,

e11n5~gq2gsp2!@gpgs~m4n22m3n3!p11g10* go@~m4n11m1n3!p42~m3n11m1n2!p5#,

ed5gs
3~m4n22m3n3!p1p21g20* gogq@2~m4n11m1n3!p41~m3n11m1n2!p5#

1g20* gogs@~m1n3p21m4n1~2p11p2!#p41m3n1p1p52m3n1p2p52m1n2p2p51m2p1~n3p42n2p5!!

1gk$gqgs@2~m4n2!1m3n3#1g20* go~m4n1p42m2n3p42m3n1p51m2n2p5!%,

e12n5~gq2gsp2!@gpgs~m4n22m3n3!p21g10* go~2m4n1p41m2n3p41m3n1p52m2n2p5!#,

e21n5~gk2gsp1!@gpgs~m4n22m3n3!p11g10* go~m4n1p41m1n3p42m3n1p52m1n2p5!#,
016312-10
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e22n5~gk2gsp1!~gpgs~m4n22m3n3!p21g10* go@2m4n1p41m2n3p41m3n1p52m2n2p5!#,

e31n5g20* gpgsp1~2gkm4n11gqm4n11gqm1n31gkm2n31gsm4n1p12gsm2n3p12gsm4n1p22gsm1n3p2!

1g10* $gsp1@gs
2~m4n11m1n3!p22g20* go~m11m2!n1p5#1gk$2@gqgs~m4n11m1n3!#1g20* go~m11m2!n1p5!%,

e32n5g20* gpgsp2~2gkm4n11gqm4n11gqm1n31gkm2n31gsm4n1p12gsm2n3p12gsm4n1p22gsm1n3p2!

1g10* @gkgqgs~m4n12m2n3!1gs
3~2m4n11m2n3!p1p22g20* gogq~m11m2!n1p51g20* gogs~m11m2!n1p2p5#,

e41n5g20* gpgsp1~2gkm3n11gqm3n11gqm1n21gkm2n21gsm3n1p12gsm2n2p12gsm3n1p22gsm1n2p2!

1g10* „gsp1@gs
2~m3n11m1n2!p22g20* go~m11m2!n1p4#1gk$2@gqgs~m3n11m1n2!#1g20* go~m11m2!n1p4%…,

e42n5g20* gpgsp2~2gkm3n11gqm3n11gqm1n21gkm2n21gsm3n1p12gsm2n2p12gsm3n1p22gsm1n2p2!

1g10* @gkgqgs~m3n12m2n2!1gs
3~2m3n11m2n2!p1p22g20* gogq~m11m2!n1p41g20* gogs~m11m2!n1p2p4#,
e
e
s

where

l 1524116d222d2216d322d4,

m1548216d252d2116d314d4,

m25248280d160d2196d3210d4216d522d6,

m352481112d132d22130d3114d4118d512d6,

m45481104d262d22127d3111d4123d513d6,

n1548156d240d2256d328d4,

n25481104d232d22104d3216d4,

n35248116d110d2241d3135d4125d513d6,

o152627d227d217d31d4,

o25212112d2,

p15296264d188d2164d318d4,

p25296264d1124d2182d3226d4218d522d6,

p3596140d2140d2260d3142d4120d512d6,

p45144196d2132d2296d3212d4,

p55144196d2186d22123d3139d4127d513d6,
01631
p65224d252d214d3150d4120d512d6,

p7596116d2192d2256d3192d4140d514d6,

q1596116d2156d2238d3158d4122d512d6,

r 152424d236d212d3112d412d5,

r 251212d218d223d316d41d5,

r 351226d218d215d316d41d5,

gs5g10* 1g20* ,

gp5g10* 1g10*
2 /g20* ,

gk5~g10*
2 p3!/g20* 1g20* p61g10* p7 ,

gq5„2~dg20*
2 l 1!1g10* ~g10* p31g20* q1!…/g20* ,

go5gs
2/g20* .

The stability of the fixed point is determined by th
232 block of the stability matrix, which corresponds to th
b functions ofa5 and x3. The eigenvalue which respond
for instability has the form

l5l01l1a11l2a2 ,

where
l05
dg20* ~g10* 1g20* !o12At11g10* g20* r 11g10*

2 r 21g20*
2 r 3

8d~1218d21d2!g20*
,

l15
l1n

ld
,

2-11
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l1n5dg20*
2 ~g11* 1g21* !o1At11g20* @2t21g11*

At1~g20* r 112g10* r 2!#1g21*
At1~At12g10*

2 r 21g20*
2 r 3!,

ld58d~1218d1d2!g20*
2 At1,

l25
l2n

ld
,

l2n5dg20*
2 ~g12* 1g22* !o1At11g20* @2t31g12*

At1~g20* r 112g10* r 2!#1g22*
At1~At12g10*

2 r 21g20*
2 r 3!,
e

with

t15d2g20*
2 ~g10* 1g20* !2~o1

224o2
2!

22dg20* o1~g10* 1g20* !

3~g10* g20* r 11g10*
2 r 21g20*

2 r 3!

1~g10* g20* r 11g10*
2 r 21g20*

2 r 3!2,

t252„d2g20* ~g10* 1g20* !~g11* g20* 1~g10*
12g20* !g21* …~o1

224o2
2!1~g10* g20* r 11g10*

2 r 2

1g20*
2 r 3!~g11* g20* r 11g10* g21* r 112g10* g11* r 2

12g20* g21* r 3!2do1$g10*
3 g21* r 21g10*

2 g20* @3g11* r 2

12g21* ~r 11r 2!#1g20*
3 @4g21* r 31g11* ~r 11r 3!#

1g10* g20*
2 @2g11* ~r 11r 2!13g21* ~r 11r 3!#%,
r.

.

d

e

9
,

k,

ev

at

01631
t352„d2g20* ~g10* 1g20* !@g12* g20* 1~g10* 12g20* !g22* #

3~o1
224o2

2!1~g10* g20* r 11g10*
2 r 21g20*

2 r 3!

3~g12* g20* r 11g10* g22* r 112g10* g12* r 2

12g20* g22* r 3!2do1$g10*
3 g22* r 21g10*

2 g20* @3g12* r 2

12g22* ~r 11r 2!#1g20*
3 @4g22* r 31g12* ~r 11r 3!#

1g10* g20*
2 @2g12* ~r 11r 2!13g22* ~r 11r 3!#%….

The borderline dimensiondc is defined as a solution of th
equation

l~dc ,e,a1 ,a2!50.
,

a

r.

r.

on-
@1# H. W. Wyld, Ann. Phys.~N.Y.! 14, 143 ~1961!.
@2# L. Ts. Adzhemyan, A. N. Vasil’ev, and Yu. M. Pismak, Teo

Mat. Fiz. 57, 268 ~1983!.
@3# K. G. Wilson and J. Kogut, Phys. Rep.12, 75 ~1974!.
@4# L. Ts. Adzhemyan, N. V. Antonov, and A. N. Vasil’ev, Usp

Fiz. Nauk166, 1257~1996! @Phys. Usp.39, 1193~1996!#.
@5# L. Ts. Adzhemyan, N. V. Antonov, and A. N. Vasil’ev,The

Field Theoretic Renormalization Group in Fully Develope
Turbulence~Gordon and Breach, London, 1999!

@6# A. N. Vasil’ev, Quantum-Field Renormalization Group in th
Theory of Critical Phenomena and Stochastic Dynamics~St.
Peterburg Institute of Nuclear Physics, St. Petersburg, 19!
@in Russian; English translation:~Gordon and Breach, London
in press!#.

@7# R. Rubinstein and J. M. Barton, Phys. Fluids30, 2987~1987!.
@8# T. L. Kim and A. V. Serd’ukov, Teor. Mat. Fiz.105, 412

~1995!.
@9# L. Ts. Adzhemyan, M. Hnatich, D. Horvath, and M. Stehli

Int. J. Mod. Phys. B9, 3401~1995!.
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